
1

Boost.Asio

A cross-platform C++ library for
network and low-level I/O

programming

Dustin Spicuzza
November 18, 2009

Parts of this presentation use materials
dervied from the Boost.Asio
documentation, distributed under the
license found at:

http://www.boost.org/LICENSE_1_0.txt

Today’s Talk

• What is Boost.Asio?

• Technical Overview

• Why it doesn't suck

• Sometimes it sucks

What is Boost.Asio?

• C++ library for doing I/O
– Sockets

– Files

– Serial Ports

– Timers

• Provides asynchronous and synchronous
operations

What is it used for?

• Primarily known as a networking library

• Various types of asynchronous I/O

• Highly concurrent clients/servers

• Event-driven programs

How I've used Asio

• SMITE
– Event-driven data analysis

– Reading from libpcap @ 200Mbps

– Blocking and non-blocking network
communications

• WebDMA (http://code.google.com/p/webdma/)

– Used for instrumentation and tuning of our
team’s robot via a browser

– Heavily optimized version of the sample HTTP
server that comes with Asio

– vxWorks on PPC, Linux, Windows XP

2

Asio Design Goals

• Portability

• Scalability

• Efficiency

• Model concepts from established APIs,
such as BSD sockets

• Ease of use

• Basis for further abstraction

Traditional (synchronous) I/O in
ASIO
• Create io_service

• Create I/O object

• Ask object to do
operation

• Result is returned
after blocking
operation is
completed

Async I/O Review

• Why asynchronous I/O?
– Program can typically queue lots of

async I/O operations at once

– Instead of waiting for a blocking I/O
operation to complete, can do other work

– Particularly suited for event-driven
programming

– Typically doesn't require explicit threads
or locking

Async I/O Review

• A generic async I/O access will typically
look something like this

– Setup some initial state (socket, etc)

– Tell the OS to do some I/O

– Do some other things

– OS signals program that the I/O is
complete

Async I/O in Asio

• Create io_service

• Create I/O object

• Ask object to initiate
operation

• Do stuff

• Completion handler
gets called when
operation complete

Async I/O in Asio

• Consistent asynchronous interface across
various types of I/O

{
io_service io;
some_io_object object(io, ...);

async_op(object, buffer, boost::bind(&some_fn, ..));
io.run();

}

void some_fn(boost::error_code &ec)
{

if (!ec)
do_something();

}

3

Async I/O in Asio

• Free functions vs object methods
– IO object methods not guaranteed to

read/write number of bytes you request

– Free functions will, or throw an error

some_io_object object(io, ...);

// free function
async_op(object, buffer, boost::bind(&some_fn, ..));

// object method
object.async_op(buffer, boost::bind(&some_fn, ..));

Error Handling

• Asynchronous operations call the
completion handler with an error_code
object

• Blocking operations support exceptions
or returning error codes

– Will throw unless you pass in an error
code for it to set

• Exceptions bubble up to io_service.run()

Things Worth Noting

• Read/write operations support single
buffer or scatter/gather

• Timing out I/O requires some extra work

• Asynchronous operations not dispatched
when using a blocking call

• Iostream-style interface for sockets is
also supported

Why it doesn't suck

• Cross-platform

• Uses optimal I/O features on a platform

• Peer reviewed & open source

• Documentation, tutorials, and useful
example code available

• Submitted for inclusion in TR2

Sometimes, it sucks

• Slow compile times for large projects
– Header-only implementation

• Library is inline using templates

Required Knowledge

• If you're going to use Boost.Asio, you'll
probably want to be familiar with:
– C++ & templates

– boost::shared_ptr

– boost::bind

4

Useful References

• Boost.Asio documentation
– http://www.boost.org/doc/libs/1_40_0/doc/html/boost_asio.html

• Asio mailing lists
– http://sourceforge.net/mail/?group_id=122478

• Asio home page
– http://www.think-async.org/

• Thinking asynchronously in C++ blog
– http://blog.think-async.org/

Questions?

